Developmental Biology Laboratory
Observations of the Zebrafish Embryo

Adapted from http://www.neuro.uoregon.edu/k12/zfk12.html

Zygote Period (0-.75h)

1-cell (0.2 h) 2-cell (0.75 h)

Cytoplasm streams toward animal pole to form the blastodisc.

Cleavage Period (0.75-2.2 h)

4-cell (1 h) 8-cell (1.25 h) 16-cell (1.5 h) 32-cell (1.75 h) 64-cell (2 h)

During this period, the first 6 cleavages occur. The cells, or blastomeres, divide synchronously at about 15 minute intervals.
Blastula Period (2.25-5.25 h)

128-cell (2.25 h) 256-cell (2.5 h) 512-cell (2.75 h) 1k-cell (3 h) high (3.3 h)

oblong (3.7 h) sphere (4 h) dome (4.3 h) 30%-epiboly (4.7 h) 50% epiboly (5.3 h)

Midblastula transition occurs at the 10th cleavage. At this division, cell membranes do not form between cells of the bottom, marginal, row of blastomeres, and thereafter, it develops into the “yolk syncytial layer (YSL)” of the yolk cell. After midblastula, transition cell divisions are asynchronous. Margin reaches 30% epiboly.
Gastrula Period (5.3-10 h)

germ ring (5.7 h) shield (6 h) 75% epiboly (8 h) 90% epiboly (9 h) bud (10 h)

Morphogenetic movements of involution, convergence, and extension form the epiblast, hypoblast, and embryonic axis through the end of epiboly.

Segmentation Period (10-24 h)

3-somite (11 h) 6-somite (12 h) 10-somite (14 h) 14-somite (16 h)
Segmentation Period (continued)

18-somite (18 h) 21-somite (19.5 h) 26-somite (22 h)

Somites, pharyngeal arch primordia, and neuromeres develop; primary organogenesis; earliest movements; the tail appears

Pharyngula Period (24-48 h)

Prim-6 (25 h) Prim-16 (31 h) Prim-22 (35 h) High-pec (42 h)

Phylotypic-stage embryo; body axis straightens from its early curvature about the yolk sac; circulation, pigmentation, and fins begin development.
Hatching Period (48-72 h)

long-pec (48 h) pec-fin (60 h) protruding mouth (72 h)

Completion of rapid morphogenesis of primary organ systems; cartilage development in head and pectoral fin; hatching occurs asynchronously. At 72 h, swim bladder inflates; food-seeking and active avoidance behaviors.
The identification of genes with unique and essential functions in the development of the zebrafish, *Danio rerio*

Pascal Hoffler, Michael Granato, Michael Brand, Mary C. Mullins, Matthias Hammerschmidt, Donald A. Kane, Jörg Odenwald, Fredericus J. M. van Eeden, Yun-Jin Jiang, Carl-Philipp Heisenberg, Robert N. Keil, Makoto Furuta-Seki, Elisabeth Vogelsang, Dirk Beuchle, Ursula Schach, Cosima Fabian and Christiane Nüsslein-Volhard

Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076 Tübingen, Germany

Present address: Institut für Neurobiologie, Universitäts-Hamburg, Im Neuenheimer Feld 294, 69110 Heidelberg, Germany

Present address: University of Pennsylvania, Department of Cell and Developmental Biology, 302 Easton Hall, Philadelphia, PA 19104-0008, USA

Present address: Howard University, 505 N. Florida Ave., Washington, DC 20059, USA

Present address: Institute for Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10467, USA

*Author for correspondence (e-mail: cmh1@mpib-tuebingen.mpg.de)